&)!*\$

&)

(CCS)

CCS (Enhanced Oil Recovery: EOR)

А

%''

4)			EC	CO ₂	
5)		CO2			CO2
6)	NH2	CO2			
7)					
8)					
1)					

CO2

 CO_2

2 CO2

 $\rm CO_2$

 $\rm CO_2$

10m

NOAA

&" & & 7C&

23 CO₂

PA

.

%Ł

&"'!& 7C_&

&"'!+'

&" (¹

CO2

CO₂ H₂O

&" (! ([·] 7C_& ·

(2.4-9)

A B (B Ö

&"(!+ &"(!,

HCO₃-

pН

Marini

pН

L. Marini : Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier, p.453, 2007

	pH						
	3.5		[H+]				
	H^+						
2	3.5	5.5	pН			P _{CO2}	
						Richard and Sjoberg, 1983	
3	5.5				pН		CO ₂
(2.4-13)

BET

N2 Kr -196

2.4

- 1 C.A.J. Appelo and D. Postma Geochemistry, groundwater and pollution by p.175 2005
- 2) D. L. Parkhurst and C.A.J. Appelo1 : USER'S GUIDE TO PHREEQC (VERSION 2)—A COMPUTER PROGRAM FOR SPECIATION, BATCH-REACTION, ONE-DIMENSIONAL TRANSPORT, AND INVERSE GEOCHEMICAL CALCULATIONS, Water-Resources Investigations Report 99-4259, pp.43-44, 1999
- 3) L. Marini : Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier, p.453, 2007

&")[·] 7C_&

 $\rm CO_2$

۰ ۲C_&

•

) &" (kW

'"%'` & ·

А

'"%1%\$\$

2)

400m

19)

1995		
5)		
		no. 741 p.1-5 2008
6)		:
	113 p. 63 2006	
7)	2	pp.338 1989 8
8)		
90 p.101-115 1984		
9)		pp.322 1988 6
10)		
104 p.634-653 1998		
11)		

16	5	1	pp.145
1989			
17)	5	1	pp.49
1976			
18)			

2)

("&"%% ("&"%"					
("&"%%	("&"%&	("&"%'			
5mm/under	10mm/under intact		5mm/under		

10mm/under

. . .

("&"%&

("&"%'

("&"%&

("&"%%

100

1

 $4.2.3-2^{+}$

100 m

CO

m
("&"*!'

. . . .

pН

EC

	-			
-	_			
-	_			
-	_			
-				

EC

 $\rm CO_2$

("&",!%

("&",!&

#d<

	-					
	-					
	-					
	-					
	-					

("&"-

30mm³ 60mm

("&"-!(&

("&"-!&

("&"-!' 7T

("&"-!' 7T

T69.192.02 96 .48T4- .47998 ref69.192.02 96

3

("&"-!((\$

 Vv^{\cdot} 1015mm³

("&"-!((\$

СТ

Vv /V 1015/10267 0.099 9.9 A^{\cdot} 6443mm² A/Vv=6443/1015 6.3

V[·] 19.7 19.7 26.3 10267[·] mm³

("&"-!(

("&"-!(("&"-!((\$ %

mm³

40 960

CO2

&")"%\$!&)aa

("'
(1)

(2)

- (3)
- (4)
- (5)

90,000 lbs(40ton)

•

.

7) 8)

2011

9)

pp. 19-22, 2008

)"% (1)

(4)

5.1-2	4)"%)	+)"%,	% \$
)"%%%%	&)"%%	%)"%%

»

%

_			
-			
_			
-			
-			
_			
	1	1	I I I I I I I I I I I I I I I I I I I
_		1	

fl) Ł

1) PHREEQC CO

)"&

)"&I& %&\$

)"&!' %&\$

5.2

1) Inamuro T. : Lattice Boltzmann methods for viscous fluid flows and for two-phase fluid flows, Fluid Dyn. Res., 38(2006), pp.641-659 2) Kataoka Y. and Inamuro T. : Numerical simulations of the behavior of a drop in a square pipe flow using the two-phase lattce Boltzmann method, Phil. Trans. R. Soc. A, 369 (2011),

‡ % 2!q`"qa 1eP# P